Compare commits
No commits in common. "d0a47f7b648e6b9e75e811fa3e2b8eb9dbeec835" and "ddfa72731f8fc795a348440c7ff9066acb3d5103" have entirely different histories.
d0a47f7b64
...
ddfa72731f
3
.idea/.gitignore
vendored
3
.idea/.gitignore
vendored
@ -8,5 +8,4 @@
|
||||
/dataSources.local.xml
|
||||
|
||||
.iml
|
||||
.xml# GitHub Copilot persisted chat sessions
|
||||
/copilot/chatSessions
|
||||
.xml
|
@ -1,357 +0,0 @@
|
||||
// Name: Jonathan Turner
|
||||
// Class: CS 4306/01
|
||||
// Term: Spring 2024
|
||||
// Instructor: Dr. Haddad
|
||||
// Assignment: 2
|
||||
// IDE Name: IntelliJ
|
||||
/*
|
||||
Algorithm Design Block
|
||||
Algorithm title: Finding Equal Disjoint Sets
|
||||
|
||||
Logical steps:
|
||||
Step 1: Get the number of items in the set as user input.
|
||||
Step 2: Get the elements in the set as user input.
|
||||
Step 3: Add all the elements to the list and save it to a variable.
|
||||
Step 4: If the sum is odd, there is no disjoint sets and it is not possible.
|
||||
Step 5: Set a variable that will hold the first set and second set representing the disjoint and initialize it to null.
|
||||
Step 6: Create a List that holds a list of elements which represent each subset.
|
||||
Step 7: Generate the subsets using a subset generation method. (Ex. Bit Shift Counting)
|
||||
Step 8: Iterate through all the subsets that were generate.
|
||||
Step 9: If the current iteration's sum is equal to half of the total sum, move to step 11. Otherwise, continue iterating.
|
||||
Step 10: If the value is not found, then there is no disjoint equal subsets. End algorithm.
|
||||
Step 11: Assign the first set's variable to the current iteration's values.
|
||||
Step 12: Assign the second set's variable to the values of the original set that are not in the first set.
|
||||
Step 13: Return the results of the two equal disjoint sets that were found.
|
||||
|
||||
Pseudocode Syntax:
|
||||
count <- input
|
||||
elements <- input
|
||||
first_set, second_set <- empty
|
||||
|
||||
sum <- 0
|
||||
for each number in elements:
|
||||
sum <- sum + number
|
||||
|
||||
if sum % 2 is 0:
|
||||
subsets <- generate_subsets(elements)
|
||||
for each subset in subsets:
|
||||
current_sum <- 0
|
||||
for each value in subset:
|
||||
current_sum <- current_sum + value
|
||||
if sum / 2 is current_sum:
|
||||
first_set <- subset
|
||||
|
||||
if first_set is not empty:
|
||||
second_set <- elements - first_set
|
||||
else
|
||||
return "no equal disjoint subsets"
|
||||
|
||||
return first_set, second_set
|
||||
|
||||
Big-O Analysis: (Based on Implementation)
|
||||
|
||||
n = the number of elements in the set.
|
||||
k = the number of elements in the current subset.
|
||||
|
||||
| init Comps | init values | i | totalSum | generateSubsets | subset | value | subsetTotal | if(half) | asignSet | secondSubset | printResults
|
||||
-------------------------------------------------------------------------------------------min-------max-------------------------min--max---------------------------------
|
||||
| 1 | 1 | 1 | 1 | 2^n | 1 | 2^(n)+1 | 1 2^(n)+1 | 2^(n) | 0 1 | 1 | 1
|
||||
| | | 2 | 1 | | 2 | 2^(n)+2 | 1 2^(n)+2 | 2^(n) | 0 1 | 2 | 1
|
||||
| | | 3 | 1 | | 3 | 2^(n)+3 | 1 2^(n)+3 | 2^(n) | 0 1 | 3 | 1
|
||||
| | | 4 | 1 | | 4 | 2^(n)+4 | 1 2^(n)+4 | 2^(n) | 0 1 | 4 | 1
|
||||
| | | ... | ... | | ... | ... | 1 ... | ... |... ... |... | 1
|
||||
| | | n | 1 | | 2^n | 2^(n)+k | 1 2^(n)+k | 2^(n) | 0 1 | k | 1
|
||||
--------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
| 1 | 1 | X | n | 2^n | X | X | 1 k*2^(n) + | n*2^(n) | 0 2^n | k | 1
|
||||
(k^(2)+k)/2 |
|
||||
Best-Case Scenario: 1 + 1 + n + 2^n + 1 + (n*2^(n)) + 0 + k + 1 = n + 2^n + (n*2^(n)) + k + 4
|
||||
Worse-Case Scenario: 1 + 1 + n + 2^n + k*2^n+(k*2^(n))/2 + n*2^(n) + 2^n + k + 1 = 2^n + k*2^n + (k*2^(n))/2 + n*2^(n) + k + 4
|
||||
Average-Case: (n*2^(n) + 2^n + k + 4 + 2^n + k*2^n + (k*2^(n))/2 + n*2^(n) + k + 4)/2
|
||||
|
||||
Big O => O(2^n)
|
||||
*/
|
||||
package Assignments.A2;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
* Generates, if possible, two equal subsets of a given set of elements that are equal to each other.
|
||||
*
|
||||
* @author Jonathan Turner
|
||||
* @version Spring 2024
|
||||
*/
|
||||
public class Partition {
|
||||
|
||||
private int[] set;
|
||||
private List<List<Integer>> subsets;
|
||||
|
||||
public static void main(String[] args) {
|
||||
Partition program = new Partition();
|
||||
program.start();
|
||||
}
|
||||
|
||||
/**
|
||||
* Used as the main sentential loop and loops until the exit option is selected.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition none
|
||||
*/
|
||||
public void start() {
|
||||
int option = this.getOption();
|
||||
while (option != 4) {
|
||||
this.executeOption(option);
|
||||
option = this.getOption();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs the action related to the option that was chosen.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition the action was performed.
|
||||
*
|
||||
* @param option the option that was chosen.
|
||||
*/
|
||||
private void executeOption(int option) {
|
||||
if (option == 1) {
|
||||
System.out.println("Please specify the size of the set.");
|
||||
System.out.print("Size: ");
|
||||
int newSize = this.getIntegerInput();
|
||||
while (newSize < 1) {
|
||||
System.out.println("Please enter a valid set size.");
|
||||
System.out.print("Size: ");
|
||||
newSize = this.getIntegerInput();
|
||||
}
|
||||
this.set = new int[newSize];
|
||||
} if (option == 2) {
|
||||
if (this.set == null) {
|
||||
System.out.println("Please enter a set size and values ");
|
||||
System.out.println();
|
||||
return;
|
||||
}
|
||||
this.set = this.getValues();
|
||||
} else {
|
||||
if (this.set == null || this.set[0] == 0) {
|
||||
System.out.println("Please enter a set size and values before executing the algorithm.");
|
||||
System.out.println();
|
||||
return;
|
||||
}
|
||||
this.performAlgorithm();
|
||||
}
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints out the menu of options, asks for an input, and if that input is invalid it prints an error and
|
||||
* prompts the user again for the input.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition none
|
||||
*
|
||||
* @return the option selected
|
||||
*/
|
||||
private int getOption() {
|
||||
this.displayMenu(); // Prints out the menu
|
||||
|
||||
// Asks for the option and begins the loop until a valid option is gathered.
|
||||
System.out.print("Enter option number: ");
|
||||
int input = getIntegerInput();
|
||||
while (input < 1 || input > 4) { // Compares it to the valid options available.
|
||||
System.out.println("\nPlease enter a valid input.");
|
||||
System.out.print("Enter option number: ");
|
||||
input = getIntegerInput();
|
||||
}
|
||||
System.out.println();
|
||||
return input;
|
||||
}
|
||||
|
||||
/**
|
||||
* Displays the menu options.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition the menu is displayed.
|
||||
*/
|
||||
private void displayMenu() {
|
||||
System.out.println("-----------------MAIN MENU--------------");
|
||||
System.out.println("1. Read set size (number of integers)");
|
||||
System.out.println("2. Read set elements (integer values)");
|
||||
System.out.println("3. Run algorithm and display outputs");
|
||||
System.out.println("4. Exit program");
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets user input to a number. A prompt must be provided prior to running this method.
|
||||
* If the input was not an integer/(unable to be autoboxed), returns -1.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition none
|
||||
*
|
||||
* @return the integer input, if invalid -1.
|
||||
*/
|
||||
private int getIntegerInput() {
|
||||
Scanner sc = new Scanner(System.in);
|
||||
try {
|
||||
String textInput = sc.nextLine();
|
||||
return Integer.parseInt(textInput);
|
||||
} catch (Exception e) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the values for the set. If the input is invalid, it will prompt the user again.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition the values are gathered.
|
||||
*
|
||||
* @return the values of the set.
|
||||
*/
|
||||
private int[] getValues() {
|
||||
Scanner sc = new Scanner(System.in);
|
||||
String input = null;
|
||||
int[] values = new int[this.set.length];
|
||||
System.out.println("Please enter a list of " + this.set.length + " positive values. (Ex. 34 35 21 23)");
|
||||
while (values[0] == 0) {
|
||||
System.out.print("Values: ");
|
||||
input = sc.nextLine();
|
||||
String[] stringRep = input.split(" ");
|
||||
|
||||
/* If the input values are not the same number as the set size */
|
||||
if (stringRep.length != values.length || input.isEmpty() ) {
|
||||
System.out.println("Please enter a valid list of " + this.set.length + " positive values. (Ex. 34 35 21 23)");
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Attempts to convert each value from String to Integer. */
|
||||
try {
|
||||
for (int i = 0; i < values.length; i++) {
|
||||
values[i] = Integer.parseInt(stringRep[i]);
|
||||
if (values[i] < 1) {
|
||||
System.out.println("Please enter a valid list of " + this.set.length + " positive values. (Ex. 34 35 21 23)");
|
||||
Arrays.fill(values, 0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} catch (Exception e) {
|
||||
System.out.println("Please enter a valid list of " + this.set.length + " positive values. (Ex. 34 35 21 23)");
|
||||
}
|
||||
}
|
||||
return values;
|
||||
}
|
||||
|
||||
/**
|
||||
* Iterates through all the possible subsets generated by this.generateSubsets
|
||||
* and if a subset is found that is exactly half the size it sets the firstset
|
||||
* to those values and the second subset to the missing values.
|
||||
*
|
||||
* @precondition set.length != 0
|
||||
* @postcondition the resulting sets are printed.
|
||||
*/
|
||||
public void performAlgorithm() {
|
||||
int totalSum = 0;
|
||||
for (int i = 0; i < this.set.length; i++) {
|
||||
totalSum += this.set[i];
|
||||
}
|
||||
List<Integer> firstSubset = null;
|
||||
List<Integer> secondSubset = null;
|
||||
|
||||
/* If the total is odd, there cannot be equal disjoint subsets. */
|
||||
if (totalSum % 2 == 1) {
|
||||
printResults(firstSubset, secondSubset);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Checks through every subset that was generated,
|
||||
* if a subset is found it sets the firstSubset to the found subset.
|
||||
*/
|
||||
generateSubsets();
|
||||
for (List<Integer> subset : subsets) {
|
||||
int subsetTotal = 0;
|
||||
for (int value : subset) {
|
||||
subsetTotal += value;
|
||||
}
|
||||
if (totalSum / 2 == subsetTotal) {
|
||||
firstSubset = subset;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Checks if a list was found, if so creates second sublist. */
|
||||
if (firstSubset != null) {
|
||||
secondSubset = new ArrayList<>();
|
||||
for (int secondValue : this.set) {
|
||||
if (!firstSubset.contains(secondValue)) {
|
||||
secondSubset.add(secondValue);
|
||||
}
|
||||
}
|
||||
}
|
||||
printResults(firstSubset, secondSubset);
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the results of the algorithm based on the two subsets. Prints the setsize and the original set.
|
||||
* If the subsets were null (No match found) print output associated, otherwise print the both lists.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition the output is displayed.
|
||||
*
|
||||
* @param firstSubset the first subset.
|
||||
* @param secondSubset the second subset.
|
||||
*/
|
||||
private void printResults(List<Integer> firstSubset, List<Integer> secondSubset) {
|
||||
int setSize = this.set.length;
|
||||
String original = "";
|
||||
for (int values : this.set) {
|
||||
original += values + " ";
|
||||
}
|
||||
String first = "{";
|
||||
String second = "{";
|
||||
if (firstSubset != null) {
|
||||
for (int fValues : firstSubset) {
|
||||
first += fValues + ",";
|
||||
}
|
||||
first = first.substring(0, first.length()-1) + "}";
|
||||
for (int sValues : secondSubset) {
|
||||
second += sValues + ",";
|
||||
}
|
||||
second = second.substring(0, second.length()-1) + "}";
|
||||
} else {
|
||||
first = "No disjoint subsets with the same sum";
|
||||
second = "of their elements found";
|
||||
}
|
||||
|
||||
System.out.println("Set size: " + setSize + " integers");
|
||||
System.out.println("Integer values: " + original);
|
||||
System.out.println("Disjoint subsets with same sum: " + first);
|
||||
System.out.println(" " + second);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates the list of subsets using Bit Shift Counting by iterating over all combinations of 1 to n.
|
||||
* After shifting the counter, the current subset is created initialized and if 1 shifted by j is logically
|
||||
* ANDed with the i and is not equal to 0, it adds the value j represents to the subset.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition the subsets are generated and added to the field.
|
||||
*/
|
||||
public void generateSubsets() {
|
||||
List<List<Integer>> subsets = new ArrayList<>();
|
||||
int n = this.set.length;
|
||||
|
||||
for (int i = 0; i < (1 << n); i++) {
|
||||
List<Integer> currentSubset = new ArrayList<>();
|
||||
for (int j = 0; j < n; j++) {
|
||||
if ((i & (1 << j)) != 0) {
|
||||
currentSubset.add(this.set[j]);
|
||||
}
|
||||
}
|
||||
subsets.add(currentSubset);
|
||||
}
|
||||
this.subsets = subsets;
|
||||
}
|
||||
}
|
@ -1,106 +0,0 @@
|
||||
// Name: Jonathan Turner
|
||||
// Class: CS 4306/01
|
||||
// Term: Spring 2024
|
||||
// Instructor: Dr. Haddad
|
||||
// Assignment: 3
|
||||
// IDE Name: IntelliJ
|
||||
package Assignments.A3;
|
||||
|
||||
public class InterpolationSearch {
|
||||
|
||||
/** Holds if the value was found or not. */
|
||||
private final boolean found;
|
||||
/** Holds the index of the key, -1 if not found. */
|
||||
private final int index;
|
||||
/** Holds the number of divisions used to perform the search. */
|
||||
private int divisions;
|
||||
|
||||
/**
|
||||
* Accepts the values, performs the search, and assigns the fields to the corresponding output data.
|
||||
* <p>
|
||||
* This constructor accepts in the array to be searched and the key to be searched for. Based off of this,
|
||||
* the method will perform some precondition checks to ensure the values are valid and then perform the
|
||||
* search using the formula provided in the slide deck.
|
||||
* </p>
|
||||
*
|
||||
* @param array The list of values being search through.
|
||||
* @param key The desired value being searched for.
|
||||
*
|
||||
* @throws IllegalArgumentException If the array is empty.
|
||||
*/
|
||||
public InterpolationSearch(int[] array, int key) {
|
||||
/* Precondition for empty list. */
|
||||
if (array.length == 0) {
|
||||
throw new IllegalArgumentException("The searched array cannot be empty.");
|
||||
}
|
||||
|
||||
/* Precondition check to see if the list is size 1 element. */
|
||||
if (array.length == 1) {
|
||||
this.found = (array[0] == key);
|
||||
this.divisions = 0;
|
||||
this.index = (array[0] == key ? 0 : -1);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Sets the default values for the search */
|
||||
int low = 0;
|
||||
int high = array.length-1;
|
||||
this.divisions = 0;
|
||||
|
||||
/* Iterates as long as high is not less than low */
|
||||
while (high >= low) {
|
||||
int probe;
|
||||
|
||||
/* Checks if high is the same thing as low to prevent division by zero. */
|
||||
if (high != low) {
|
||||
probe = low + (((key - array[low]) * (high - low)) / (array[high] - array[low]));
|
||||
this.divisions++;
|
||||
} else {
|
||||
probe = high;
|
||||
}
|
||||
|
||||
/* Checks if it passed the element due to it not being in list. */
|
||||
if (array[high] < key || array[low] > key) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Checks if the key is less than the probe's value */
|
||||
if (array[probe] > key) {
|
||||
high = probe - 1;
|
||||
} else if (array[probe] < key) { /* Checks if the key is greater than the probes value */
|
||||
low = probe + 1;
|
||||
} else { /* The key was found at the probes index. */
|
||||
this.found = true;
|
||||
this.index = probe;
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Sets the values if the key was not in the list. */
|
||||
this.found = false;
|
||||
this.index = -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets if the key was found.
|
||||
* @return if it was found.
|
||||
*/
|
||||
public boolean isFound() {
|
||||
return found;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the number of divisions it took for the search to conclude.
|
||||
* @return the number of divisions
|
||||
*/
|
||||
public int getDivisions() {
|
||||
return divisions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the index at which the key was found. If the key was not found it returns -1.
|
||||
* @return the found index.
|
||||
*/
|
||||
public int getIndex() {
|
||||
return index;
|
||||
}
|
||||
}
|
@ -1,189 +0,0 @@
|
||||
// Name: Jonathan Turner
|
||||
// Class: CS 4306/01
|
||||
// Term: Spring 2024
|
||||
// Instructor: Dr. Haddad
|
||||
// Assignment: 3
|
||||
// IDE Name: IntelliJ
|
||||
package Assignments.A3;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class TestInterpolationSearch {
|
||||
|
||||
/** Holds the list of 1024 unique values used to search through */
|
||||
public int[] values;
|
||||
/** Holds the size of the table to generate */
|
||||
public int tableSize;
|
||||
|
||||
public static void main(String[] args) {
|
||||
TestInterpolationSearch program = new TestInterpolationSearch();
|
||||
program.start();
|
||||
}
|
||||
|
||||
/**
|
||||
* Used as the main sentential loop and loops until the exit option is selected.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition none
|
||||
*/
|
||||
public void start() {
|
||||
int option = this.getOption();
|
||||
while (option != 4) {
|
||||
this.executeOption(option);
|
||||
option = this.getOption();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Displays the menu options.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition the menu is displayed.
|
||||
*/
|
||||
private void displayMenu() {
|
||||
System.out.println("----------------------MAIN MENU-------------------");
|
||||
System.out.println("1. Create, populate, and display array Values[]");
|
||||
System.out.println("2. Read output table size");
|
||||
System.out.println("3. Run interpolation search and display outputs");
|
||||
System.out.println("4. Exit program");
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints out the menu of options, asks for an input, and if that input is invalid it prints an error and
|
||||
* prompts the user again for the input.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition none
|
||||
*
|
||||
* @return the option selected
|
||||
*/
|
||||
private int getOption() {
|
||||
this.displayMenu(); // Prints out the menu
|
||||
|
||||
// Asks for the option and begins the loop until a valid option is gathered.
|
||||
System.out.print("Enter option number: ");
|
||||
int input = getIntegerInput();
|
||||
while (input < 1 || input > 4) { // Compares it to the valid options available.
|
||||
System.out.println("\nPlease enter a valid input.");
|
||||
System.out.print("Enter option number: ");
|
||||
input = getIntegerInput();
|
||||
}
|
||||
System.out.println();
|
||||
return input;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets user input to a number. A prompt must be provided prior to running this method.
|
||||
* If the input was not an integer/(unable to be autoboxed), returns -1.
|
||||
*
|
||||
* @precondition none
|
||||
* @postcondition none
|
||||
*
|
||||
* @return the integer input, if invalid -1.
|
||||
*/
|
||||
protected int getIntegerInput() {
|
||||
Scanner sc = new Scanner(System.in);
|
||||
try {
|
||||
String textInput = sc.nextLine();
|
||||
return Integer.parseInt(textInput);
|
||||
} catch (Exception e) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
public void executeOption(int option) {
|
||||
/* The option used for the values generation */
|
||||
if (option == 1) {
|
||||
this.randomDistinct();
|
||||
System.out.println("The generated Values: ");
|
||||
|
||||
/* Displays the generated values */
|
||||
for (int i = 0; i < this.values.length; i++) {
|
||||
System.out.print(String.format("%-6s", this.values[i]));
|
||||
/* Splits the rows at 30 columns */
|
||||
if ((i+1) % 30 == 0) {
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
System.out.println();
|
||||
} else if (option == 2) { /* Handles the table size */
|
||||
System.out.println("Enter the table size: ");
|
||||
System.out.print("Size: ");
|
||||
int size = -1;
|
||||
size = getIntegerInput();
|
||||
|
||||
/* Used if the table input is invalid */
|
||||
while (size < 1) {
|
||||
System.out.println("Enter a valid table size: (size > 0)");
|
||||
System.out.print("Size: ");
|
||||
size = getIntegerInput();
|
||||
}
|
||||
this.tableSize = size;
|
||||
} else if (option == 3) { /* Generates and displays the table */
|
||||
if (this.values == null) { /* Used to check if the values have been generated */
|
||||
System.out.println("Please generate the values first.");
|
||||
System.out.println();
|
||||
return;
|
||||
}
|
||||
if (this.tableSize < 1) { /* Used to check if the table size has been set */
|
||||
System.out.println("Please enter a table size.");
|
||||
System.out.println();
|
||||
return;
|
||||
}
|
||||
/* Runs the search */
|
||||
this.runIntSearch();
|
||||
}
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a list of 1024 random, non-repeating, integers and assigns them to the values field.
|
||||
*/
|
||||
public void randomDistinct() {
|
||||
/* Used to track what ints have been used */
|
||||
HashSet<Integer> isUsed = new HashSet<>();
|
||||
int[] newList = new int[1024];
|
||||
Random random = new Random();
|
||||
|
||||
/* Loops 1024 times and assigns a new unique value each time. */
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
int newValue = -1;
|
||||
|
||||
/* Ensures that there is no duplicate values */
|
||||
do {
|
||||
newValue = random.nextInt(9999) + 1;
|
||||
} while (isUsed.contains(newValue));
|
||||
|
||||
/* Adds the value to the known list and also to the generated list. */
|
||||
newList[i] = (newValue);
|
||||
isUsed.add(newValue);
|
||||
}
|
||||
/* Sorts and assigns the values generated to the field. */
|
||||
Arrays.sort(newList);
|
||||
this.values = newList;
|
||||
}
|
||||
|
||||
public void runIntSearch() {
|
||||
int totalDivisions = 0;
|
||||
Random rand = new Random();
|
||||
|
||||
/* Prints out the table headers */
|
||||
System.out.println(" " + String.format("%-10s%-10s%-10s%-10s", "Key", "Found", "Index", "Divisions"));
|
||||
System.out.println("----------------------------------------------");
|
||||
|
||||
/* Prints out each row and performs the Interpolation Search for each value up to the table size. */
|
||||
for (int i = 0; i < this.tableSize; i++) {
|
||||
int key = rand.nextInt(9999) + 1;
|
||||
InterpolationSearch results = new InterpolationSearch(this.values, key);
|
||||
System.out.println(" " + String.format("%-10s%-10s%-10s%-10s", key, results.isFound(), results.getIndex(), results.getDivisions()));
|
||||
totalDivisions += results.getDivisions();
|
||||
}
|
||||
|
||||
/* Prints out the average and the difference from the expected average */
|
||||
double averageDivs = (double) totalDivisions / (double) this.tableSize;
|
||||
System.out.println("\nDivisions average: " + averageDivs);
|
||||
System.out.println("Difference: " + Math.abs(3.322 - averageDivs));
|
||||
System.out.println();
|
||||
}
|
||||
}
|
@ -23,11 +23,7 @@ public class FakeCoin extends Application {
|
||||
* @postcondition a new FakeCoin application is created.
|
||||
*/
|
||||
public FakeCoin() {
|
||||
super(new String[]{
|
||||
"The number of coins",
|
||||
"Set FakeCoin Weight and Location",
|
||||
"Find Fake Coin"
|
||||
});
|
||||
super(new String[]{"The number of coins","Set FakeCoin Weight and Location","Find Fake Coin"});
|
||||
this.setLocation = false;
|
||||
}
|
||||
|
||||
@ -82,7 +78,7 @@ public class FakeCoin extends Application {
|
||||
}
|
||||
|
||||
private void performAlgorithm() {
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
|
Loading…
Reference in New Issue
Block a user